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1|Introduction    

Decision trees are popular in machine learning for their interpretability, simplicity, and capacity to handle 

diverse datasets. However, conventional trees focus solely on splitting nodes according to class purity and 

ignore the operational efficiency of the entities being analyzed. In practice, especially in organizational, 

healthcare, and financial contexts, it is critical to identify underperforming units to support strategic decisions. 

Data Envelopment Analysis (DEA) is a widely used approach to assess relative efficiency by comparing 

multiple inputs and outputs across units. Incorporating DEA into a decision tree allows the algorithm to 

consider both class separation and performance efficiency. By assigning stronger influence to units with 

greater inefficiency during node splitting, the resulting tree not only classifies observations effectively but also 

highlights branches associated with operational weaknesses [1–4]. This dual focus enhances decision-making 
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Abstract 

This paper introduces a modified decision tree methodology that incorporates efficiency evaluation through Data 

Envelopment Analysis (DEA). Standard decision trees rely on class distribution metrics such as the Gini index or 

Entropy, overlooking the performance characteristics of individual observations. In contrast, the proposed approach 

calculates inefficiency scores for each Decision-Making Unit (DMU) based on input excesses and output shortfalls. 

It uses these scores to weight samples during tree construction. This integration allows the model to achieve accurate 

classification while simultaneously highlighting units with poor performance. Results indicate that the DEA-informed 

decision tree effectively captures inefficiency patterns and provides actionable insights for performance 

improvement, while maintaining predictive accuracy.  
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by combining predictive capabilities with performance assessment, addressing a key limitation of traditional 

tree-based methods. 

This paper presents a comprehensive framework for evaluating bank branch efficiency, covering 

preliminaries, methodology, a case study on DEA-informed decision tree analysis, and a conclusion. The 

findings indicate that integrating DEA-based inefficiency measures with decision tree learning provides an 

effective approach for assessing and interpreting branch performance, offering actionable insights for 

managers to optimize resource allocation and improve operational efficiency. 

DEA is a widely used nonparametric methodology for assessing the relative efficiency of Decision-Making 

Units (DMUs) across multiple inputs and outputs. The foundational CCR model by Charnes et al. [1] provided 

a systematic framework to evaluate efficiency without assuming a specific functional form. This model was 

later extended by Banker et al. [5] to account for technical and scale inefficiencies, offering more nuanced 

insights into operational performance. 

Additionally, approaches such as those proposed by Daraio and Simar [6] integrate environmental variables 

probabilistically, enabling the measurement of efficiency under varying external conditions. Further 

refinements, including constrained polynomial splines for data envelope fitting [7], enhance the flexibility and 

accuracy of DEA models in practical applications. 

Tree-based machine learning algorithms provide interpretable, effective predictive modeling tools that often 

complement DEA analyses. Breiman [8] introduced bagging to reduce variance by aggregating multiple 

decision trees, while iterated bagging [9] further mitigates bias in regression models. Gradient boosting 

methods, exemplified by XGBoost [10], provide scalable, precise tree-based predictions for large datasets. 

Combining DEA-derived inefficiency scores with these machine learning techniques enables hybrid models 

in which efficiency outcomes guide predictive splits, thereby improving interpretability and performance 

assessment in operational and financial contexts. 

2|Preliminaries 

DEA is a linear programming-based method for evaluating the relative efficiency of DMUs that operate with 

multiple inputs and outputs. By constructing a best-practice frontier from the observed data, DEA determines 

how far each unit deviates from the most efficient performance. Its nonparametric framework eliminates the 

need for prior assumptions about functional forms, enabling flexible analysis across different orientations and 

scales. Both radial and non-radial DEA models are commonly applied: radial models proportionally scale all 

inputs or outputs, while non-radial models allow uneven adjustments, capturing more nuanced inefficiency 

patterns. 

In recent years, integrating DEA with machine learning techniques has gained attention, particularly with 

decision trees, random forests, and ensemble learning methods. These approaches benefit from DEA by 

weighting observations based on their inefficiency scores, thereby enhancing predictive models with 

performance-aware splitting criteria.  

For example, in decision tree and random forest algorithms, incorporating efficiency information can 

prioritize underperforming units, improving both classification accuracy and interpretability. Ensemble 

learning further leverages multiple models to provide robust predictions while maintaining sensitivity to 

efficiency variations, bridging operational performance assessment and predictive analytics in a unified 

framework. 

Suppose that n DMUs produce s outputs by consuming m inputs. Also, suppose that in the case where the 

units are black boxes, Xj = (x1j, x2j, . . . , xmj) represents the vector of inputs and Yj = (y1j, y2j, . . . , ysj)  

represents the vector of outputs of the DMUj . The model for calculating the efficiency of the DMUo, o ∈

{1, . . . , n}, is as follows. 
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The presented model is an additive DEA model designed to evaluate the relative efficiency of DMUs by 

simultaneously considering input excesses and output shortfalls. In this formulation, each DMU is compared 

to a linear combination of peer units, represented by weights αj. The slack variables βi and ρr capture the 

additional input use and the shortfall in outputs for the DMU under evaluation, respectively. The objective 

function maximizes the average of these slack-adjusted inefficiencies, providing a collective measure of 

inefficiency that incorporates both input and output deviations from the efficient frontier. 

The constraints ensure that the weighted combination of peer DMUs, adjusted by the slack variables, equals 

the target DMU's observed inputs and outputs. A convexity condition is imposed by requiring that the sum 

of weights ∑ αj
n
j=1 = 1, reflecting Variable Returns to Scale (VRS). All weights and slack variables are non-

negative, ensuring meaningful interpretations. This additive model differs from traditional ratio-based DEA 

models by explicitly quantifying inefficiencies in both dimensions (inputs and outputs), allowing a more 

granular assessment of performance. A DMU achieving the maximum objective value indicates full efficiency, 

while lower values identify units with notable input excesses or output shortfalls. 

3|Methodology 

In decision tree algorithms, the Gini index is commonly used as a measure of node impurity to determine the 

best feature for splitting the data. Traditionally, the Gini index considers only the distribution of class labels 

within a node, without accounting for external performance metrics of the data points. By incorporating an 

inefficiency score derived from DEA or similar methods, each observation can be weighted by its relative 

inefficiency, allowing the splitting criterion to reflect both class purity and the performance of the units. This 

adjustment ensures that splits favor nodes that group not only similar classes but also more efficient or less 

inefficient observations. 

Using inefficiency-adjusted Gini measures helps prioritize observations with a larger impact on overall system 

performance. Observations with higher inefficiency contribute more to the impurity measure, making the 

algorithm more sensitive to underperforming units. As a result, the modified decision tree can produce splits 

that better capture data patterns while simultaneously reflecting each unit's operational performance. This 

approach effectively integrates classification and efficiency analysis, enabling the decision tree to serve as both 

a predictive model and a performance assessment tool. 

Zo = Max {∑ ρr + ∑ βi

m

i=1

s

r=1

}  

s. t. 

 ∑ αjxij

n

j=1

+ βi = xio, i = 1, . . . , m, 

∑ αjyrj

s

r=1

− ρr = yro, j = 1, . . . , n, 

∑ αj
n
j=1 = 1, 

(1) 

αj, ρr, βi ≥ 0, r = 1, . . . , s, i = 1, . . . , m, j = 1, . . , n.  

Wo = Max {
βi

xio
,

ρr

yro
, i = 1, . . . , m, r = 1, . . . , s }.  

s. t. (2) 
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The proposed model is a relative inefficiency-based DEA approach, designed to evaluate DMUs by 

identifying the maximum proportional slack in both inputs and outputs. Unlike traditional additive DEA 

models, which consider the average slack across all inputs and outputs, this model focuses on the largest 

relative inefficiency for each DMU, measuring how much each input exceeds its efficient benchmark and how 

much each output falls short of its target. By normalizing the slack with respect to observed input or output 

values, the model provides a scale-independent inefficiency measure that highlights the most critical areas 

where the DMU underperforms. 

The model's constraints ensure that each DMU is compared to a convex combination of peer units, with the 

respective slack variables adjusting for differences. The sum of weights equals one, reflecting variable VRS, 

while all weights and slack variables are non-negative to ensure meaningful interpretations. Maximizing the 

objective identifies the unit under evaluation's largest proportional inefficiency, allowing decision-makers to 

pinpoint the most significant input excesses or output shortfalls. This approach is particularly useful for 

performance improvement and benchmarking, as it not only quantifies overall inefficiency but also highlights 

the specific inputs or outputs that contribute most to underperformance. 

The inefficiency of each DMU is computed using the proposed DEA model (2), which evaluates both input 

excesses and output shortfalls. For each DMU, the model identifies the maximum proportional slack across 

inputs and outputs, yielding a normalized inefficiency measure. This measure provides a scale-independent 

assessment of the unit’s performance and highlights the most critical areas of underperformance. Each 

observation in the dataset is then associated with an inefficiency score, which influences its contribution to 

the splitting criterion in the decision tree. 

In the modified algorithm, the standard Gini index is replaced with a weighted impurity measure based on 

DEA inefficiency. Observations with higher inefficiency contribute more to node impurity, ensuring that 

splits account for both class distribution and performance quality. During splitting, all candidate features are 

evaluated, and the split that maximizes the reduction in weighted impurity is selected. This approach 

prioritizes nodes that group similar classes while also capturing units with high inefficiency, enhancing the 

interpretability of the tree in performance analysis contexts. 

The recursive splitting continues until stopping criteria are met, such as a minimum number of observations 

per node or a threshold for weighted impurity reduction. At each leaf, the average inefficiency of the contained 

observations is reported, allowing decision-makers to identify branches with the highest operational 

shortcomings. Consequently, the tree provides a dual-purpose output: it classifies observations accurately 

while simultaneously highlighting critical inefficiency patterns. 

The proposed DEA-informed decision tree effectively combines predictive classification with performance 

evaluation, offering richer insights than conventional trees. By weighting observations according to 

inefficiency, the algorithm becomes more sensitive to underperforming units, ensuring that key areas for 

improvement are visible in the resulting model. This integrated approach is particularly useful in operational 

or managerial contexts where both the classification outcome and unit efficiency are critical for informed 

decision-making. 

 ∑ αjxij

n

j=1

+ βi = xio, i = 1, . . . , m, 

∑ αjyrj

s

r=1

− ρr = yro, j = 1, . . . , n, 

∑ αj
n
j=1 = 1, 

αj, ρr, βi ≥ 0, r = 1, . . . , s, i = 1, . . . , m, j = 1, . . , n.  
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In this study, we propose a modified decision tree algorithm that integrates inefficiency measures from a 

DEA model into the node-splitting process. Traditional decision trees rely on metrics such as the Gini index 

or Entropy to select splits based solely on class distributions. These measures do not account for the relative 

performance or efficiency of the observations. By incorporating inefficiency scores from a DEA model, each 

observation is assigned a weight reflecting its underperformance. It allows the algorithm to consider both 

class purity and operational performance, providing splits that reflect not only the labels but also the efficiency 

of units. 

The inefficiency scores are derived from a DEA model that measures input excesses and output shortfalls, 

highlighting the most critical areas where each unit underperforms. During tree construction, these scores are 

used to compute a weighted impurity measure for candidate splits, replacing the standard Gini index. 

Observations with higher inefficiency contribute more to the impurity, making the algorithm more sensitive 

to underperforming units. The resulting decision tree provides a dual-purpose output: it classifies 

observations accurately while simultaneously revealing inefficiency patterns across the dataset, enabling 

decision-makers to identify critical areas for improvement. 

The following algorithm outlines a DEA-informed decision tree approach that integrates inefficiency scores 

from a DEA model into the tree construction process. Each step demonstrates how inefficiency weighting 

guides node splitting, recursive tree building, and final leaf evaluation to combine classification accuracy with 

performance assessment. 

Step 1. Compute inefficiency: apply the DEA model to each DMU to calculate input and output inefficiency 

scores. 

Step 2. Assign weights: assign each observation a weight proportional to its inefficiency. 

Step 3. Evaluate splits: for each candidate feature, compute a weighted impurity measure using the 

inefficiency scores. Select the split that maximizes impurity reduction. 

Step 4. Recursive tree construction: repeat the splitting process recursively for child nodes until stopping 

criteria are met (e.g., minimum node size or threshold impurity). 

Step 5. Leaf interpretation: at each leaf, report the average inefficiency of contained samples to highlight 

branches with high underperformance. 

 

Fig. 1. DEA-informed decision tree algorithm. 

The flowchart illustrates the proposed DEA-informed Decision Tree algorithm, which integrates efficiency 

analysis into a classification model. It begins with data input and the DEA model, followed by the 

computation of inefficiency scores for each DMU. These inefficiency scores are then assigned as weights to 

the corresponding samples, influencing the node-splitting process. The algorithm evaluates candidate splits 

using a weighted impurity measure that accounts for both class distribution and inefficiency, and recursively 
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constructs the tree until stopping criteria are met. Finally, the flowchart shows that the completed tree outputs 

the classification structure along with the average inefficiency at each leaf, highlighting the branches with the 

highest underperformance for decision-making. 

4|Case Study: Hospital Efficiency Modeling 

This study utilizes a dataset comprising 500 bank branches, each considered as a DMU. For each branch, four 

financial indicators are used as explanatory variables: Credit, Deposits, Loans, and Profit, which collectively 

reflect resource allocation, intermediation activity, and financial performance.  In addition, a DEA-based 

inefficiency measure obtained from a collective (ensemble) DEA model is incorporated as the target variable. 

This inefficiency score represents the relative distance of each branch from the efficiency frontier and serves 

as a quantitative indicator of operational underperformance. The dataset is structured in a cross-sectional 

format and prepared for integration with machine learning models. 

The DEA-informed decision tree analysis identifies Loans as the most influential variable in explaining 

inefficiency, as it consistently appears at the root and upper levels of the tree. Subsequent splits highlight the 

joint role of Deposits and Profit, indicating that inefficiency is not driven by a single factor but by the 

interaction among financial indicators. 

Branches with balanced loan volumes, sufficient deposits, and higher profitability tend to exhibit lower 

inefficiency scores. In contrast, branches with weak profitability or disproportionate credit–loan structures 

are associated with higher inefficiency. The resulting decision rules provide a transparent and interpretable 

mapping between financial conditions and DEA-based inefficiency outcomes. 

 

Fig. 2. DEA-informed decision tree (three-layer summary). 

The first layer of the decision tree is split based on the “Deposits” attribute. The left branch represents units 

with deposits less than or equal to 1,185,164.38, while the right branch represents units with deposits higher 

than this threshold. This initial split highlights key differences in inefficiency among the units and establishes 

the foundation for subsequent analyses. In the second layer, the left branch is further divided based on 

“Loans,” while the right branch uses a combination of “Deposits” and “Profit.” On the left, units are classified 

by loan amount, allowing identification of groups with varying inefficiencies. On the right, deposits and profit 

levels are used to create more precise groupings, thereby facilitating clearer distinctions between efficient and 

inefficient units. The third layer provides detailed decision rules using “Credit” and “Profit” to determine the 

final inefficiency value at each leaf. Each terminal node displays the numerical inefficiency corresponding to 

that group of units. This layer clearly illustrates how input-output combinations affect efficiency, enabling the 

identification of inefficiency patterns for informed managerial planning. 

5|Conclusion 

This research highlights the benefits of combining DEA with decision tree models to assess the performance 

of bank branches. Incorporating DEA-derived inefficiency scores as the target variable allows the approach 

to merge precise efficiency evaluation with a transparent, interpretable machine learning model.  Analysis 
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shows that financial factors, including deposits, loans, credit, and profit, significantly influence branch 

inefficiency. The DEA-informed decision tree structure clearly captures the operational patterns associated 

with inefficiency, helping managers identify specific processes or branches that require attention. For instance, 

branches with lower deposit levels or uneven loan distribution tend to be less efficient, providing actionable 

insights for improvement. 

In summary, this integrated methodology serves as an effective decision-support tool, translating complex 

efficiency metrics into understandable guidance. It facilitates informed managerial decision-making, supports 

resource-allocation decisions, and enables targeted strategies to enhance branch performance and operational 

efficiency. 
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